Serveur d'exploration sur les peptides biopesticides

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Wolbachia successfully replicate in a newly established horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) cell line.

Identifieur interne : 000003 ( Main/Exploration ); précédent : 000002; suivant : 000004

Wolbachia successfully replicate in a newly established horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) cell line.

Auteurs : Mukund Madhav [Australie] ; Geoff Brown [Australie] ; Jess At Morgan [Australie] ; Sassan Asgari [Australie] ; Elizabeth A. Mcgraw [États-Unis] ; Ulrike G. Munderloh [États-Unis] ; Timothy J. Kurtti [États-Unis] ; Peter James [Australie]

Source :

RBID : pubmed:32058670

Descripteurs français

English descriptors

Abstract

BACKGROUND

Haematobia spp., horn flies (HF) and buffalo flies (BF), are economically important ectoparasites of dairy and beef cattle. Control of these flies relies mainly on treating cattle with chemical insecticides. However, the development of resistance to commonly used compounds is compromising the effectiveness of these treatments and alternative methods of control are required. Wolbachia are maternally transmitted endosymbiotic bacteria of arthropods that cause various reproductive distortions and fitness effects, making them a potential candidate for use in the biological control of pests. The first step towards this is the establishment and adaptation of xenobiotic infections of Wolbachia in target host cell lines.

RESULTS

Here, we report the successful establishment of a continuous HF cell line (HIE-18) from embryonic cells and its stable transinfection with Wolbachia strains wAlbB native to mosquitoes, and wMel and wMelPop native to Drosophila melanogaster. HIE-18 cells were typically round and diploid with ten chromosomes (2n = 10) or tetraploid with 20 chromosomes (4n = 20), with a doubling time of 67.2 h. Wolbachia density decreased significantly in HIE-18 cells in the first 48 h of infection, possibly due to overexpression of antimicrobial peptides through the Imd immune signalling pathway. However, density recovered after this time and HIE-18 cell lines stably infected with the three strains of Wolbachia have now each been subcultured more than 50 times as persistently infected lines.

CONCLUSION

The amenability of HF cells to infection with different strains of Wolbachia and the establishment of stable sustaining infections suggest the potential for use of Wolbachia in novel approaches for the control of Haematobia spp. Further, the availability of the HIE-18 cell line will provide an important resource for the study of genetics, host-parasite interactions and chemical resistance in Haematobia populations. © 2020 Society of Chemical Industry.


DOI: 10.1002/ps.5785
PubMed: 32058670


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Wolbachia successfully replicate in a newly established horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) cell line.</title>
<author>
<name sortKey="Madhav, Mukund" sort="Madhav, Mukund" uniqKey="Madhav M" first="Mukund" last="Madhav">Mukund Madhav</name>
<affiliation wicri:level="1">
<nlm:affiliation>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brown, Geoff" sort="Brown, Geoff" uniqKey="Brown G" first="Geoff" last="Brown">Geoff Brown</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture and Fisheries, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Agriculture and Fisheries, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morgan, Jess At" sort="Morgan, Jess At" uniqKey="Morgan J" first="Jess At" last="Morgan">Jess At Morgan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture and Fisheries, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Agriculture and Fisheries, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Asgari, Sassan" sort="Asgari, Sassan" uniqKey="Asgari S" first="Sassan" last="Asgari">Sassan Asgari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcgraw, Elizabeth A" sort="Mcgraw, Elizabeth A" uniqKey="Mcgraw E" first="Elizabeth A" last="Mcgraw">Elizabeth A. Mcgraw</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Munderloh, Ulrike G" sort="Munderloh, Ulrike G" uniqKey="Munderloh U" first="Ulrike G" last="Munderloh">Ulrike G. Munderloh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Minnesota, Minneapolis, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Minnesota, Minneapolis, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kurtti, Timothy J" sort="Kurtti, Timothy J" uniqKey="Kurtti T" first="Timothy J" last="Kurtti">Timothy J. Kurtti</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Minnesota, Minneapolis, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Minnesota, Minneapolis, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="James, Peter" sort="James, Peter" uniqKey="James P" first="Peter" last="James">Peter James</name>
<affiliation wicri:level="1">
<nlm:affiliation>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32058670</idno>
<idno type="pmid">32058670</idno>
<idno type="doi">10.1002/ps.5785</idno>
<idno type="wicri:Area/Main/Corpus">000084</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000084</idno>
<idno type="wicri:Area/Main/Curation">000084</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000084</idno>
<idno type="wicri:Area/Main/Exploration">000084</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Wolbachia successfully replicate in a newly established horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) cell line.</title>
<author>
<name sortKey="Madhav, Mukund" sort="Madhav, Mukund" uniqKey="Madhav M" first="Mukund" last="Madhav">Mukund Madhav</name>
<affiliation wicri:level="1">
<nlm:affiliation>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brown, Geoff" sort="Brown, Geoff" uniqKey="Brown G" first="Geoff" last="Brown">Geoff Brown</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture and Fisheries, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Agriculture and Fisheries, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morgan, Jess At" sort="Morgan, Jess At" uniqKey="Morgan J" first="Jess At" last="Morgan">Jess At Morgan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture and Fisheries, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Agriculture and Fisheries, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Asgari, Sassan" sort="Asgari, Sassan" uniqKey="Asgari S" first="Sassan" last="Asgari">Sassan Asgari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcgraw, Elizabeth A" sort="Mcgraw, Elizabeth A" uniqKey="Mcgraw E" first="Elizabeth A" last="Mcgraw">Elizabeth A. Mcgraw</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Munderloh, Ulrike G" sort="Munderloh, Ulrike G" uniqKey="Munderloh U" first="Ulrike G" last="Munderloh">Ulrike G. Munderloh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Minnesota, Minneapolis, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Minnesota, Minneapolis, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kurtti, Timothy J" sort="Kurtti, Timothy J" uniqKey="Kurtti T" first="Timothy J" last="Kurtti">Timothy J. Kurtti</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, University of Minnesota, Minneapolis, MN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Minnesota, Minneapolis, MN</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="James, Peter" sort="James, Peter" uniqKey="James P" first="Peter" last="James">Peter James</name>
<affiliation wicri:level="1">
<nlm:affiliation>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pest management science</title>
<idno type="eISSN">1526-4998</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Drosophila melanogaster (MeSH)</term>
<term>Insecticides (MeSH)</term>
<term>Muscidae (MeSH)</term>
<term>Wolbachia (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Drosophila melanogaster (MeSH)</term>
<term>Insecticides (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Muscidae (MeSH)</term>
<term>Wolbachia (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Insecticides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Drosophila melanogaster</term>
<term>Muscidae</term>
<term>Wolbachia</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Drosophila melanogaster</term>
<term>Insecticides</term>
<term>Lignée cellulaire</term>
<term>Muscidae</term>
<term>Wolbachia</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Haematobia spp., horn flies (HF) and buffalo flies (BF), are economically important ectoparasites of dairy and beef cattle. Control of these flies relies mainly on treating cattle with chemical insecticides. However, the development of resistance to commonly used compounds is compromising the effectiveness of these treatments and alternative methods of control are required. Wolbachia are maternally transmitted endosymbiotic bacteria of arthropods that cause various reproductive distortions and fitness effects, making them a potential candidate for use in the biological control of pests. The first step towards this is the establishment and adaptation of xenobiotic infections of Wolbachia in target host cell lines.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here, we report the successful establishment of a continuous HF cell line (HIE-18) from embryonic cells and its stable transinfection with Wolbachia strains wAlbB native to mosquitoes, and wMel and wMelPop native to Drosophila melanogaster. HIE-18 cells were typically round and diploid with ten chromosomes (2n = 10) or tetraploid with 20 chromosomes (4n = 20), with a doubling time of 67.2 h. Wolbachia density decreased significantly in HIE-18 cells in the first 48 h of infection, possibly due to overexpression of antimicrobial peptides through the Imd immune signalling pathway. However, density recovered after this time and HIE-18 cell lines stably infected with the three strains of Wolbachia have now each been subcultured more than 50 times as persistently infected lines.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The amenability of HF cells to infection with different strains of Wolbachia and the establishment of stable sustaining infections suggest the potential for use of Wolbachia in novel approaches for the control of Haematobia spp. Further, the availability of the HIE-18 cell line will provide an important resource for the study of genetics, host-parasite interactions and chemical resistance in Haematobia populations. © 2020 Society of Chemical Industry.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32058670</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1526-4998</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Pest management science</Title>
<ISOAbbreviation>Pest Manag Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Wolbachia successfully replicate in a newly established horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) cell line.</ArticleTitle>
<Pagination>
<MedlinePgn>2441-2452</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ps.5785</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Haematobia spp., horn flies (HF) and buffalo flies (BF), are economically important ectoparasites of dairy and beef cattle. Control of these flies relies mainly on treating cattle with chemical insecticides. However, the development of resistance to commonly used compounds is compromising the effectiveness of these treatments and alternative methods of control are required. Wolbachia are maternally transmitted endosymbiotic bacteria of arthropods that cause various reproductive distortions and fitness effects, making them a potential candidate for use in the biological control of pests. The first step towards this is the establishment and adaptation of xenobiotic infections of Wolbachia in target host cell lines.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here, we report the successful establishment of a continuous HF cell line (HIE-18) from embryonic cells and its stable transinfection with Wolbachia strains wAlbB native to mosquitoes, and wMel and wMelPop native to Drosophila melanogaster. HIE-18 cells were typically round and diploid with ten chromosomes (2n = 10) or tetraploid with 20 chromosomes (4n = 20), with a doubling time of 67.2 h. Wolbachia density decreased significantly in HIE-18 cells in the first 48 h of infection, possibly due to overexpression of antimicrobial peptides through the Imd immune signalling pathway. However, density recovered after this time and HIE-18 cell lines stably infected with the three strains of Wolbachia have now each been subcultured more than 50 times as persistently infected lines.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The amenability of HF cells to infection with different strains of Wolbachia and the establishment of stable sustaining infections suggest the potential for use of Wolbachia in novel approaches for the control of Haematobia spp. Further, the availability of the HIE-18 cell line will provide an important resource for the study of genetics, host-parasite interactions and chemical resistance in Haematobia populations. © 2020 Society of Chemical Industry.</AbstractText>
<CopyrightInformation>© 2020 Society of Chemical Industry.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Madhav</LastName>
<ForeName>Mukund</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3907-9479</Identifier>
<AffiliationInfo>
<Affiliation>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Geoff</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture and Fisheries, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morgan</LastName>
<ForeName>Jess At</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture and Fisheries, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Asgari</LastName>
<ForeName>Sassan</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-7885-6544</Identifier>
<AffiliationInfo>
<Affiliation>Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McGraw</LastName>
<ForeName>Elizabeth A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Munderloh</LastName>
<ForeName>Ulrike G</ForeName>
<Initials>UG</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Minnesota, Minneapolis, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kurtti</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Minnesota, Minneapolis, MN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>James</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Meat and Livestock Australia</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Pest Manag Sci</MedlineTA>
<NlmUniqueID>100898744</NlmUniqueID>
<ISSNLinking>1526-498X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007306">Insecticides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="N">Drosophila melanogaster</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007306" MajorTopicYN="N">Insecticides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009117" MajorTopicYN="Y">Muscidae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020577" MajorTopicYN="Y">Wolbachia</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Wolbachia</Keyword>
<Keyword MajorTopicYN="N">Haematobia spp.</Keyword>
<Keyword MajorTopicYN="N">biocontrol</Keyword>
<Keyword MajorTopicYN="N">biopesticide</Keyword>
<Keyword MajorTopicYN="N">horn fly</Keyword>
<Keyword MajorTopicYN="N">pest management</Keyword>
<Keyword MajorTopicYN="N">veterinary ectoparasite</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32058670</ArticleId>
<ArticleId IdType="doi">10.1002/ps.5785</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Oyarzun MP, Quiroz A and Birkett MA, Insecticide resistance in the horn fly: alternative control strategies. Med Vet Entomol 22:188-202 (2008).</Citation>
</Reference>
<Reference>
<Citation>Iwasa M and Ishiguro N, Genetic and morphological differences of Haematobia irritans and H. exigua, and molecular phylogeny of Japanese Stomoxyini flies (Diptera, Muscidae). Med Entomol Zool 61:335-344 (2010).</Citation>
</Reference>
<Reference>
<Citation>Lane J, Jubb T, Shephard R, Webb-Ware J and Fordyce G. Priority list of endemic diseases for the red meat industries. Meat & Livestock Australia (Report) B.AHE.0010 (2015).</Citation>
</Reference>
<Reference>
<Citation>Grisi L, Leite RC, Martins JR, Barros AT, Andreotti R, Cancado PH et al., Reassessment of the potential economic impact of cattle parasites in Brazil. Rev Bras Parasitol Vet 23:150-156 (2014).</Citation>
</Reference>
<Reference>
<Citation>Farnsworth WR, Collett MG and Ridley IS, Field survey of insecticide resistance in Haematobia irritans exigua de Meijere (Diptera: Muscidae). Aust J Entomol 36:257-261 (1997).</Citation>
</Reference>
<Reference>
<Citation>Rothwell JT, Hacket KC, Friend M, Farnsworth WR and Lowe LB, Efficacy of zeta-cypermethrin as pour-on or spray formulations for the control of buffalo fly (Haematobia irritans exigua) in cattle. Aust Vet J 76:610-612 (1998).</Citation>
</Reference>
<Reference>
<Citation>Zug R and Hammerstein P, Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev 90:89-111 (2015).</Citation>
</Reference>
<Reference>
<Citation>Zug R and Hammerstein P, Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544 (2012).</Citation>
</Reference>
<Reference>
<Citation>Weeks AR, Turelli M, Harcombe WR, Reynolds KT and Hoffmann AA, From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5:e114 (2007).</Citation>
</Reference>
<Reference>
<Citation>Hughes GL and Rasgon JL, Transinfection: a method to investigate Wolbachia-host interactions and control arthropod-borne disease. Insect Mol Biol 23:141-151 (2014).</Citation>
</Reference>
<Reference>
<Citation>Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME and Bouletreau M, Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci U S A 98:6247-6252 (2001).</Citation>
</Reference>
<Reference>
<Citation>Kageyama D and Traut W, Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc Biol Sci 271:251-258 (2004).</Citation>
</Reference>
<Reference>
<Citation>Hosokawa T, Koga R, Kikuchi Y, Meng X-Y and Fukatsu T, Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci U S A 107:769-774 (2010).</Citation>
</Reference>
<Reference>
<Citation>Werren JH, Baldo L and Clark ME, Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741-751 (2008).</Citation>
</Reference>
<Reference>
<Citation>Bian G, Xu Y, Lu P, Xie Y and Xi Z, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6:e1000833 (2010).</Citation>
</Reference>
<Reference>
<Citation>Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X et al., Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340:748-751 (2013).</Citation>
</Reference>
<Reference>
<Citation>Peng Y, Nielsen JE, Cunningham JP and McGraw EA, Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl Environ Microbiol 74:3943-3948 (2008).</Citation>
</Reference>
<Reference>
<Citation>Pietri JE, DeBruhl H and Sullivan W, The rich somatic life of Wolbachia. Microbiology 5:923-936 (2016).</Citation>
</Reference>
<Reference>
<Citation>Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, Williams CR et al., Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol 212:1436-1441 (2009).</Citation>
</Reference>
<Reference>
<Citation>Min KT and Benzer S, Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A 94:10792-10796 (1997).</Citation>
</Reference>
<Reference>
<Citation>Zhang B, McGraw E, Floate KD, James P, Jorgensen W and Rothwell J, Wolbachia infection in Australasian and North American populations of Haematobia irritans (Diptera: Muscidae). Vet Parasitol 162:350-353 (2009).</Citation>
</Reference>
<Reference>
<Citation>Madhav M, Parry R, Morgan JAT, James P and Asgari S, Wolbachia endosymbiont of the horn fly Haematobia irritans irritans: a supergroup a strain with multiple horizontally acquired cytoplasmic incompatibility genes. Appl Environ Microbiol:02589-02519 (2020). https://doi.org/10.1128/AEM.02589-19</Citation>
</Reference>
<Reference>
<Citation>Raychoudhury R, Baldo L, Oliveira DC and Werren JH, Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 63:165-183 (2009).</Citation>
</Reference>
<Reference>
<Citation>Roy V, Girondot M and Harry M, The distribution of Wolbachia in Cubitermes (Termitidae, Termitinae) castes and colonies: a modelling approach. PLoS One 10:e0116070 (2015).</Citation>
</Reference>
<Reference>
<Citation>Sintupachee S, Milne JR, Poonchaisri S, Baimai V and Kittayapong P, Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb Ecol 51:294-301 (2006).</Citation>
</Reference>
<Reference>
<Citation>Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E et al., Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc Biol Sci 279:1791-1796 (2012).</Citation>
</Reference>
<Reference>
<Citation>Brown AN and Lloyd VK, Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Exp Appl Acarol 66:301-311 (2015).</Citation>
</Reference>
<Reference>
<Citation>Ahmed MZ, Li SJ, Xue X, Yin XJ, Ren SX, Jiggins FM et al., The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 11:e1004672 (2015).</Citation>
</Reference>
<Reference>
<Citation>Le Clec'h W, Chevalier FD, Genty L, Bertaux J, Bouchon D and Sicard M, Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods. PLoS One 8:e60232 (2013).</Citation>
</Reference>
<Reference>
<Citation>Frost CL, Pollock SW, Smith JE and Hughes WO, Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes. PLoS One 9:e95122 (2014).</Citation>
</Reference>
<Reference>
<Citation>Kageyama D, Narita S and Noda H, Transfection of feminizing Wolbachia endosymbionts of the butterfly, Eurema hecabe, into the cell culture and various immature stages of the silkmoth, Bombyx mori. Microb Ecol 56:733-741 (2008).</Citation>
</Reference>
<Reference>
<Citation>Herbert RI and McGraw EA, The nature of the immune response in novel Wolbachia-host associations. Symbiosis 74:225-236 (2018).</Citation>
</Reference>
<Reference>
<Citation>McMeniman CJ, Lane AM, Fong AW, Voronin DA, Iturbe-Ormaetxe I, Yamada R et al., Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74:6963-6969 (2008).</Citation>
</Reference>
<Reference>
<Citation>McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF et al., Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141-144 (2009).</Citation>
</Reference>
<Reference>
<Citation>Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M, Seleznev A et al., Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol 5:2189-2204 (2013).</Citation>
</Reference>
<Reference>
<Citation>Rosales C and Vonnie S, in Cellular and Molecular Mechanisms of Insect Immunity: Insect Physiology and Ecology, ed. by Shields D. InTeach Publicaiton, Rijeka, Croatia, pp. 179-212 (2017).</Citation>
</Reference>
<Reference>
<Citation>Wong ZS, Hedges LM, Brownlie JC and Johnson KN, Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS One 6:e25430 (2011).</Citation>
</Reference>
<Reference>
<Citation>Tinoco-Nunes B, Telleria EL, da Silva-Neves M, Marques C, Azevedo-Brito DA, Pitaluga AN et al., The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasit Vectors 9:222-233 (2016).</Citation>
</Reference>
<Reference>
<Citation>Stokes BA, Yadav S, Shokal U, Smith LC and Eleftherianos I, Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol 6:19-31 (2015).</Citation>
</Reference>
<Reference>
<Citation>Bourtzis K, Pettigrew MM and O'Neill SL, Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol 9:635-639 (2000).</Citation>
</Reference>
<Reference>
<Citation>Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS et al., Wolbachia induces reactive oxygen species (ROS)-dependent activation of the toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 109:23-31 (2012).</Citation>
</Reference>
<Reference>
<Citation>Kambris Z, Cook PE, Phuc HK and Sinkins SP, Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134-136 (2009).</Citation>
</Reference>
<Reference>
<Citation>Rances E, Ye YH, Woolfit M, McGraw EA and O'Neill SL, The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8:e1002548 (2012).</Citation>
</Reference>
<Reference>
<Citation>Caragata EP, Rances E, Hedges LM, Gofton AW, Johnson KN, O'Neill SL et al., Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 9:e1003459 (2013).</Citation>
</Reference>
<Reference>
<Citation>da Silva GD, Iturbe-Ormaetxe I, Martins-da-Silva A, Telleria EL, Rocha MN, Traub-Csekö YM et al., Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasit Vectors 12:33-46 (2019).</Citation>
</Reference>
<Reference>
<Citation>Harris RL, Laboratory colonization of the horn fly, Haematobia irritans (L.). Nature 196:191-192 (1962).</Citation>
</Reference>
<Reference>
<Citation>Goblirsch MJ, Spivak MS and Kurtti TJ, A cell line resource derived from honey bee (Apis mellifera) embryonic tissues. PLoS One 8:e69831 (2013).</Citation>
</Reference>
<Reference>
<Citation>Oliver JD, Burkhardt NY, Felsheim RF, Kurtti TJ and Munderloh UG, Motility characteristics are altered for Rickettsia bellii transformed to overexpress a heterologous rickA gene. Appl Environ Microbiol 80:1170-1176 (2014).</Citation>
</Reference>
<Reference>
<Citation>Munderloh UG and Kurtti TJ, Formulation of medium for tick cell culture. Exp Appl Acarol 7:219-229 (1989).</Citation>
</Reference>
<Reference>
<Citation>Low VL, Tan TK, Lim PE, Domingues LN, Tay ST, Lim YAL et al., Use of COI, CytB and ND5 genes for intra- and inter-specific differentiation of Haematobia irritans and Haematobia exigua. Vet Parasitol 204:439-442 (2014).</Citation>
</Reference>
<Reference>
<Citation>Wiwatanaratanabutr S and Kittayapong P, Effects of temephos and temperature on Wolbachia load and life history traits of Aedes albopictus. Med Vet Entomol 20:300-307 (2006).</Citation>
</Reference>
<Reference>
<Citation>Yeap HL, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA et al., Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasit Vectors 7:58-71 (2014).</Citation>
</Reference>
<Reference>
<Citation>Schmittgen TD and Livak KJ, Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101-1108 (2008).</Citation>
</Reference>
<Reference>
<Citation>Voronin D, Tran-Van V, Potier P and Mavingui P, Transinfection and growth discrepancy of Drosophila Wolbachia strain wMel in cell lines of the mosquito Aedes albopictus. J Appl Microbiol 108:2133-2141 (2010).</Citation>
</Reference>
<Reference>
<Citation>Fallon AM, Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wAlbB. In Vitro Cell Dev Biol Anim 44:154-161 (2008).</Citation>
</Reference>
<Reference>
<Citation>Sakamoto JM and Azad AF, Propagation of arthropod-borne Rickettsia spp. in two mosquito cell lines. Appl Environ Microbiol 73:6637-6643 (2007).</Citation>
</Reference>
<Reference>
<Citation>Hoffmann AA, Ross PA and Rasic G, Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8:751-768 (2015).</Citation>
</Reference>
<Reference>
<Citation>Torres L, Almazan C, Ayllon N, Galindo RC, Rosario-Cruz R, Quiroz-Romero H et al., Identification of microorganisms in partially fed female horn flies, Haematobia irritans. Parasitol Res 111:1391-1395 (2012).</Citation>
</Reference>
<Reference>
<Citation>Palavesam A, Guerrero FD, Heekin AM, Wang J, Dowd SE, Sun Y et al., Pyrosequencing-based analysis of the microbiome associated with the horn fly, Haematobia irritans. PLoS One 7:e44390 (2012).</Citation>
</Reference>
<Reference>
<Citation>Jeyaprakash A and Hoy M, Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393-405 (2000).</Citation>
</Reference>
<Reference>
<Citation>Floate KD, Kyei-Poku GK and Coghlin PC, Overview and relevance of Wolbachia bacteria in biocontrol research. Biocontrol Sci Technol 16:767-788 (2006).</Citation>
</Reference>
<Reference>
<Citation>Hornok S, Foldvari G, Elek V, Naranjo V, Farkas R and de la Fuente J, Molecular identification of Anaplasma marginale and rickettsial endosymbionts in blood-sucking flies (Diptera: Tabanidae, Muscidae) and hard ticks (Acari: Ixodidae). Vet Parasitol 154:354-359 (2008).</Citation>
</Reference>
<Reference>
<Citation>O'Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC and Dobson SL, Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl Trop Dis 6:e1797 (2012).</Citation>
</Reference>
<Reference>
<Citation>Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X et al., Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56-61 (2019).</Citation>
</Reference>
<Reference>
<Citation>Brooks MA and Kurtti TJ, Insect cell and tissue culture. Annu Rev Entomol 16:27-52 (1971).</Citation>
</Reference>
<Reference>
<Citation>Perotti MA, Lysyk TJ, Kalischuk-Tymensen LD, Yanke LJ and Selinger LB, Growth and survival of immature Haematobia irritans (Diptera: Muscidae) is influenced by bacteria isolated from cattle manure and conspecific larvae. J Med Entomol 38:180-187 (2001).</Citation>
</Reference>
<Reference>
<Citation>Hayflick L and Moorhead PS, The serial cultivation of human diploid cell strains. Exp Cell Res 25:585-621 (1961).</Citation>
</Reference>
<Reference>
<Citation>Forneris NS, Otero G, Pereyra A, Repetto G, Rabossi A, Quesada-Allue LA et al., High chromosomal variation in wild horn fly Haematobia irritans (Linnaeus) (Diptera, Muscidae) populations. Comp Cytogenet 9:31-50 (2015).</Citation>
</Reference>
<Reference>
<Citation>Lachance LE, Chromosome studies in three species of Diptera (Muscidae and Hypodermatidae). Ann Entomol Soc Am 57:69-73 (1964).</Citation>
</Reference>
<Reference>
<Citation>Avancini RM and Weinzierl RA, Karyotype of the horn fly, Haematobia irritans (L.)(Diptera, Muscidae). Cytologia 59:269-272 (1994).</Citation>
</Reference>
<Reference>
<Citation>Lynn DE, Development and characterization of insect cell lines. Cytotechnology 20:3-11 (1996).</Citation>
</Reference>
<Reference>
<Citation>Schneider I, Differentiation of larval Drosophila eye-antennal discs in vitro. J Exp Zool 156:91-103 (1964).</Citation>
</Reference>
<Reference>
<Citation>Snyder AK, McLain C and Rio RV, The tsetse fly obligate mutualist Wigglesworthia morsitans alters gene expression and population density via exogenous nutrient provisioning. Appl Environ Microbiol 78:7792-7797 (2012).</Citation>
</Reference>
<Reference>
<Citation>Snyder AK, Deberry JW, Runyen-Janecky L and Rio RVM, Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc R Soc Lond 277:2389-2397 (2010).</Citation>
</Reference>
<Reference>
<Citation>Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, Albertson R et al., The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog 11:e1004777 (2015).</Citation>
</Reference>
<Reference>
<Citation>Thomas MB and Blanford S, Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344-350 (2003).</Citation>
</Reference>
<Reference>
<Citation>Moghadam NN, Thorshauge PM, Kristensen TN, de Jonge N, Bahrndorff S, Kjeldal H et al., Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly (Austin) 12:1-12 (2018).</Citation>
</Reference>
<Reference>
<Citation>Clancy DJ and Hoffmann AA, Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl 86:13-24 (1998).</Citation>
</Reference>
<Reference>
<Citation>Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM and Hoffmann AA, Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog 13:e1006006 (2017).</Citation>
</Reference>
<Reference>
<Citation>Mouton L, Henri H, Bouletreau M and Vavre F, Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132:49-56 (2006).</Citation>
</Reference>
<Reference>
<Citation>Murdock CC, Blanford S, Hughes GL, Rasgon JL and Thomas MB, Temperature alters Plasmodium blocking by Wolbachia. Sci Rep 4:3932-3936 (2014).</Citation>
</Reference>
<Reference>
<Citation>Ulrich JN, Beier JC, Devine GJ and Hugo LE, Heat sensitivity of wMel Wolbachia during Aedes aegypti development. PLoS Negl Trop Dis 10:e0004873 (2016).</Citation>
</Reference>
<Reference>
<Citation>Strunov A, Kiseleva E and Gottlieb Y, Spatial and temporal distribution of pathogenic Wolbachia strain wMelPop in Drosophila melanogaster central nervous system under different temperature conditions. J Invertebr Pathol 114:22-30 (2013).</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Madhav, Mukund" sort="Madhav, Mukund" uniqKey="Madhav M" first="Mukund" last="Madhav">Mukund Madhav</name>
</noRegion>
<name sortKey="Asgari, Sassan" sort="Asgari, Sassan" uniqKey="Asgari S" first="Sassan" last="Asgari">Sassan Asgari</name>
<name sortKey="Brown, Geoff" sort="Brown, Geoff" uniqKey="Brown G" first="Geoff" last="Brown">Geoff Brown</name>
<name sortKey="James, Peter" sort="James, Peter" uniqKey="James P" first="Peter" last="James">Peter James</name>
<name sortKey="Morgan, Jess At" sort="Morgan, Jess At" uniqKey="Morgan J" first="Jess At" last="Morgan">Jess At Morgan</name>
</country>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Mcgraw, Elizabeth A" sort="Mcgraw, Elizabeth A" uniqKey="Mcgraw E" first="Elizabeth A" last="Mcgraw">Elizabeth A. Mcgraw</name>
</region>
<name sortKey="Kurtti, Timothy J" sort="Kurtti, Timothy J" uniqKey="Kurtti T" first="Timothy J" last="Kurtti">Timothy J. Kurtti</name>
<name sortKey="Munderloh, Ulrike G" sort="Munderloh, Ulrike G" uniqKey="Munderloh U" first="Ulrike G" last="Munderloh">Ulrike G. Munderloh</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/BiopestPeptidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    BiopestPeptidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32058670
   |texte=   Wolbachia successfully replicate in a newly established horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) cell line.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32058670" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a BiopestPeptidV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 19:22:35 2020. Site generation: Thu Nov 19 19:33:26 2020